Cystic Lesions of the Pancreas

Serge Sorser, MD
Outline

• Overview/Introduction
• What is EUS?
• Serous Cystadenoma (SCA)
• Pseudocyst
• Walled-off Pancreatic Necrosis (WOPN)
• Mucinous Cystic Neoplasm
• Intraductal Papillary Mucinous Neoplasm
• Rare Lesions
• Summary
Overview

• Use of cross-sectional imaging

• Cysts elsewhere
 • Renal 41%
 • Hepatic 18%
 • Pancreatic? 13.5%

• Role of EUS

What is EUS?

Combination of Endoscopy and Ultrasound

https://gi.jhsps.org/GDL_Disease.aspx?CurrentUDV=31&GDL_Cat_ID=551CDCA7-A3C1-49E5-B6A0-C19DE1F94871&GDL_Disease_ID=0ADCFDB3-7DE7-4D53-82F5-6F0C9BFB7F14

January 19, 2015

Kulkarni K. Endoscopic Ultrasound of the Gastrointestinal Tract. JLGH. 2010. 5(2);50-3
SCA

• Previously known as a microcystic adenomas and are benign\(^1\)

• Second most common cystic tumor of the pancreas, accounting for up to 30% of pancreatic cysts\(^2\)

• Occur most commonly in the body and tail of the pancreas\(^3\)

• Often seen in middle aged-women, but can occur in both sexes and at any age\(^4\)

Patients are commonly asymptomatic\(^1\)

- may present with abdominal pain and a palpable mass

Cross sectional imaging may help make the diagnosis\(^2\)

- multi-septated cyst with so-called “honeycombing”

- A typical central, often spiculated (“sunburst”) calcification may be seen\(^3\)

Fluid\(^4\)

- clear with cuboidal cells lining the cyst cavity

- low cyst fluid CEA and bland cytology are noted

2 Kim HJ, Lee DH, Ko YT, et al. CT of Serous Cystadenoma of the Pancreas and Mimicking Masses. AJR. 2008;190:406-12

Kim HJ, Lee DH, Ko YT, et al. CT of serous cystadenoma of the pancreas and mimicking masses. AJR. 2008;190:406-12
SCA
• Benign nature of SCA - no surveillance
• Low rate of malignant transformation (< 3%)\(^1\)
• Surgical intervention is not indicated unless symptoms
 • consideration of surgical intervention in the appropriate patient if
 • symptoms that can be attributed to the lesion
 • the cyst in aggregate is greater than 4 cm

Pseudocyst

- Most commonly a complication of acute or chronic pancreatitis
- can occur following trauma to the pancreas
- Rich in amylase and other pancreatic enzymes
- not lined by an epithelium
- Underlying etiology is multifactorial and leads to ductal disruption
- increase in pancreatic ductal pressure
- Present with ongoing abdominal pain and anorexia weeks after their initial presentation
- jaundice or sepsis also noted
- Large cysts frequently compress the stomach and/or duodenum
- can cause gastric outlet obstruction

Pseudocyst

- Pseudocysts are usually distinguished by lack of significant solid debris (as is more commonly seen in walled of pancreatic necrosis (WOPN))
- Diagnosis is made by cross-sectional imaging
 - CT of the abdomen/pelvis\(^1\)
 - MRI, EUS or ERCP may also be considered\(^2\)
 - MRI and EUS give more accurate assessment of the amount of solid debris with in a pancreatic fluid collection

Pseudocyst

- High cyst fluid amylase with a low cyst fluid CEA\(^1,2,3\)
- Treatment modalities
 - endoscopic
 - surgical
 - interventional radiology

Pseudocyst

- Endoscopy
 - transampullary drainage via pancreatic duct stent placement
 - through the pancreatic duct and the stent
 - the pancreatic stent may simply relieve pressure on the pancreatic duct and stops backfilling of the cyst, allowing it to resolve over time
 - transpapillary drainage may be an adequate approach in up to 79.5% of patients

Pseudocyst

- Endoscopy

- transmural drainage\(^1,2,3,4\)
 - puncturing the cyst via EUS with fluoroscopic guidance
 - delineating the cyst cavity
 - dilating the tract
 - placing multiple plastic double pigtail stents or single metal stents

- some patients warrant both transmural and transampullary drainage simultaneously\(^5\)

Pseudocyst
Pseudocyst - Xlumena™
Pseudocyst

- Surgery\(^1,2\)
 - cystenterostomy in the most dependent part of the cyst cavity
 - remains patent for months
- IR\(^3,4\)
 - most appropriate window
 - transperitoneal
 - retroperitoneal
 - transgastric
 - transduodenal
 - transhepatic
 - placement of a percutaneous external drain
- least invasive and can be favored in patients who are poor candidates for other interventions

WOPN

- WOPN
- coined in 2007
- complication of necrotizing pancreatitis
- a collection of fluid and solid components that tends to develop 3 to 6 weeks after an episode of pancreatitis,
- some patients develop an immature form of this lesion in a shorter timeframe¹
- seen in 1 to 9% of cases of acute pancreatitis and occurs most commonly after biliary pancreatitis²

WOPN

- Ongoing abdominal pain, as well as fever and leukocytosis\(^1\)
 - can be present even in the absence of infection
- Diagnosis typically made on cross-sectional imaging\(^2\)
 - visualizing a non-enhancing pancreatic fluid collection, which may contain solid debris
- Indications for intervention include clinical suspicion of\(^3\)
 - infected necrotizing pancreatitis with clinical deterioration
 - gastric outlet obstruction
 - intestinal or biliary obstruction
 - due to mass effect of walled-off necrosis
 - persistent symptoms in patients with walled-off necrosis without signs of infection

\(^2\) Murphy KP, O’Connor OJ, Maher MM. Updated imaging nomenclature for acute pancreatitis *AJR.* 2014;203(5):464-9
Many therapeutic modalities for WOPN exist

- not all infected pancreatic necrosis requires intervention

- Good clinical outcome in patients treated conservatively with a prolonged course of antibiotics and supportive care\(^1,2\)

- supported by a meta-analysis of eight studies, including 324 patients\(^3\)

- conservative management without necrosectomy - successful in 64% of patients

WOPN

- Endoscopic drainage methods
 - endoscopic transmural drainage
 - held open via plastic or metal stents
 - combined percutaneous/endoscopic techniques
 - dedicated, covered self-expanding metal stents
 - fully covered esophageal and biliary stents has also been noted for these purposes
 - procedure related complications have as high as 21-25%
 - bleeding
 - sepsis
 - perforation
 - overall success rate of 82-93%

• Radiologic approach
 • retroperitoneal approach to the necrotic cavity
 • minimally invasive and has an overall success rate of 33-56%1,2
• complications
 • internal and external pancreatic fistulas3
• overall mortality rate of 17.4%
• Surgical approaches
 • minimally invasive/laparoscopic techniques
 • transgastric endolumenal cystogastrostomy4
 • common adverse events include5
 • pancreatic fistulae 28.6%
 • debris recollection 10.7%
 • wound infection 10.7%

WOPN

- Combined/multidisciplinary approach
- reduced
 - length of stay
 - number of radiological procedures
 - number of ERCPs
- durable long-term outcome
 - 100/103 patients did not require surgery at two years\(^1,2\)
- modalities selected should rely on\(^3,4\)
 - individual center expertise
 - anatomic position
 - ratio of solid to fluid components within the collection
 - degree of systemic organ dysfunction

\(^1\) Gluck M, Ross A, Irani S, et al. Dual modality drainage for symptomatic walled-off pancreatic necrosis reduces length of hospitalization, radiological procedures, and number of endoscopies compared to standard percutaneous drainage. *J Gastrointest Surg.* 2012;16(2):248-56
MCN

- Most common types of pancreatic cysts
- constitute up to one half of all known cystic lesions of the pancreas.
- Range in size from 5 to 35 cm
- Predominantly found in females\(^1,2\)
- Fifth or sixth decade of life\(^3\)
- Tends to localize in the body or tail of the pancreas\(^4,5\)
- Defined strictly by the presence of ovarian type stroma within the tumor\(^6\)

MCN

- No communication with the main pancreatic duct is noted
- Fluid analysis
 - thick and mucoid material
 - low amylase
 - high CEA
- Histology
 - mostly benign
 - Adenoma 72%
 - Borderline neoplasm 10.5%
 - Carcinoma in situ 5.5%
 - Invasive cancer 12%
- Malignant transformation may occur via K-ras and p53 mutations
- Surgical resection is recommended for all MCNs
- Cysts are typically unifocal and when the resected tumor is non-invasive, no surveillance is required

IPMN

- Mucin producing lesions of the exocrine pancreas
- Account for up to one third of pancreatic cysts
- responsible for only one percent of pancreatic cancers
- May be subcategorized in terms of their ductal involvement
 - main duct 16-30%
 - side branch 40-65%
 - mixed type 15-23%
- Most are solitary and are located in the pancreatic head
- 20-40% may be multifocal

IPMN

- Histologically graded as:
 - low grade dysplasia
 - intermediate grade dysplasia
 - high grade dysplasia
- Also sub-classified into four different types:
 - gastric
 - intestinal
 - pancreaticobiliary
 - oncocytic
- Classification is descriptive and indicative of different pathways of differentiation and progression to carcinoma

IPMN

- Cyst content may be analyzed in a number of ways:
 - mucin stain
 - viscosity
 - CEA count > 192 used as the most reliable test.
 - CEA is the most diagnostic marker for IPMN in fluid analysis based on receiver operator curve extrapolation.
- IPMN may be malignant at presentation
 - carry a better prognosis than pancreatic adenocarcinoma in this setting
- Worrisome features of IPMN lesions:
 - size greater than 3 cm
 - presence of mural nodules
 - dilation and/or involvement of the main pancreatic duct and cyst location (main duct versus side branch)

IPMN

IPMN

Table 1: Meta-analysis of PD size

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>2.494 (0.910 - 6.660)</td>
<td>1.960 (.159)</td>
</tr>
<tr>
<td>Caboggin</td>
<td>189.809</td>
<td></td>
</tr>
<tr>
<td>Sai</td>
<td>33.571 (1.318 - 854.947)</td>
<td>2.127 (.033)</td>
</tr>
<tr>
<td>Wakabayashi</td>
<td>4.949 (0.226 - 193.825)</td>
<td>1.000 (.313)</td>
</tr>
<tr>
<td>Maguchi</td>
<td>2.917 (0.514 - 16.804)</td>
<td>1.902 (.106)</td>
</tr>
<tr>
<td>Sakai</td>
<td>8.054 (0.698 - 81.201)</td>
<td>1.000 (.354)</td>
</tr>
<tr>
<td>Akita</td>
<td>7.933 (1.470 - 42.561)</td>
<td>2.410 (.313)</td>
</tr>
<tr>
<td>Takekita</td>
<td>18.000 (2.468 - 131.285)</td>
<td>2.661 (.036)</td>
</tr>
<tr>
<td>H</td>
<td>7.27 (3.022 - 17.380)</td>
<td>4.462 (.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>0.01 1 0.1 1 0.01</td>
</tr>
</tbody>
</table>

Table 2: Mural nodules meta-analysis

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>3.828 (1.539 - 9.640)</td>
<td>2.849 (.004)</td>
</tr>
<tr>
<td>Jang</td>
<td>2.576 (0.919 - 7.357)</td>
<td>1.800 (.072)</td>
</tr>
<tr>
<td>Schultz</td>
<td>5.500 (1.559 - 19.522)</td>
<td>2.638 (.006)</td>
</tr>
<tr>
<td>Rodriguez</td>
<td>39.827 (11.735 - 135.171)</td>
<td>5.950 (.000)</td>
</tr>
<tr>
<td>Han</td>
<td>61.322 (10.824 - 347.529)</td>
<td>4.850 (.000)</td>
</tr>
<tr>
<td>Serikawa</td>
<td>2.806 (0.723 - 10.771)</td>
<td>1.486 (.134)</td>
</tr>
<tr>
<td>Chtuka</td>
<td>15.167 (2.733 - 84.162)</td>
<td>3.110 (.002)</td>
</tr>
<tr>
<td>Nakajima</td>
<td>93.006 (1.039 - 9692.657)</td>
<td>2.804 (.007)</td>
</tr>
<tr>
<td>Caboggin</td>
<td>657.006 (11.567 - 3175.410)</td>
<td>2.347 (.002)</td>
</tr>
<tr>
<td>Sai</td>
<td>15.867 (5.647 - 449.115)</td>
<td>1.607 (.108)</td>
</tr>
<tr>
<td>Sugihara</td>
<td>5.026 (0.419 - 63.657)</td>
<td>1.372 (.003)</td>
</tr>
<tr>
<td>Wakabayashi</td>
<td>42.778 (1.976 - 925.070)</td>
<td>2.534 (.017)</td>
</tr>
<tr>
<td>Nakajima</td>
<td>5.206 (0.981 - 27.524)</td>
<td>1.787 (.073)</td>
</tr>
<tr>
<td>Chtuka</td>
<td>5.547 (1.938 - 15.891)</td>
<td>3.190 (.001)</td>
</tr>
<tr>
<td>Arimoto</td>
<td>32.069 (0.223 - 3.600)</td>
<td>0.823 (.386)</td>
</tr>
<tr>
<td>Hwang</td>
<td>14.131 (5.692 - 35.334)</td>
<td>5.867 (.000)</td>
</tr>
<tr>
<td>Akita</td>
<td>32.832 (4.822 - 119.597)</td>
<td>3.357 (.001)</td>
</tr>
<tr>
<td>Vo</td>
<td>12.429 (2.327 - 62.243)</td>
<td>2.946 (.000)</td>
</tr>
<tr>
<td>Takekita</td>
<td>11.006 (1.764 - 69.085)</td>
<td>2.744 (.006)</td>
</tr>
<tr>
<td>H</td>
<td>9.274 (0.931 - 16.140)</td>
<td>7.482 (.002)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>0.01 1 0.1 1 0.01</td>
</tr>
</tbody>
</table>

Table 3: Size x 3mm meta-analysis

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>27.413 (10.404 - 75.669)</td>
<td>6.859 (.000)</td>
</tr>
<tr>
<td>Jang</td>
<td>412.713 (142.389 - 1306.791)</td>
<td>10.899 (.000)</td>
</tr>
<tr>
<td>Schultz</td>
<td>44.956 (19.637 - 105.274)</td>
<td>8.187 (.004)</td>
</tr>
<tr>
<td>Rodriguez</td>
<td>668.333 (215.177 - 2068.124)</td>
<td>9.523 (.000)</td>
</tr>
<tr>
<td>Han</td>
<td>25.344 (5.557 - 55.892)</td>
<td>4.188 (.001)</td>
</tr>
<tr>
<td>Nakajima</td>
<td>40.218 (19.568 - 80.430)</td>
<td>14.811 (.000)</td>
</tr>
<tr>
<td>Chtuka</td>
<td>5.547 (1.938 - 15.891)</td>
<td>3.190 (.001)</td>
</tr>
<tr>
<td>Arimoto</td>
<td>32.069 (0.223 - 3.600)</td>
<td>0.823 (.386)</td>
</tr>
<tr>
<td>Hwang</td>
<td>14.131 (5.692 - 35.334)</td>
<td>5.867 (.000)</td>
</tr>
<tr>
<td>Akita</td>
<td>32.832 (4.822 - 119.597)</td>
<td>3.357 (.001)</td>
</tr>
<tr>
<td>Vo</td>
<td>12.429 (2.327 - 62.243)</td>
<td>2.946 (.000)</td>
</tr>
<tr>
<td>Takekita</td>
<td>11.006 (1.764 - 69.085)</td>
<td>2.744 (.006)</td>
</tr>
<tr>
<td>H</td>
<td>9.274 (0.931 - 16.140)</td>
<td>7.482 (.002)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>0.01 1 0.1 1 0.01</td>
</tr>
</tbody>
</table>
Surgical intervention include1,2,3
- pancreaticoduodenectomy
- distal pancreatectomy
- total pancreatectomy
- segmental resection
- enucleations
- duodenum preserving resections

For patients who are not surgical candidates, endoscopic ablation with ethanol has been described4,5,6 only considered experimental at this time

Surveillance strategies after definitive therapy are guided by the Sendai Criteria7
- based on clean surgical margins
- extent of dysplasia
- whether known cystic lesions remain the pancreas

IPMN

<table>
<thead>
<tr>
<th>TABLE 3. Stratification of patients and outcome by ethanol concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>No. patients</td>
</tr>
<tr>
<td>Resolved</td>
</tr>
<tr>
<td>Persistent</td>
</tr>
<tr>
<td>Decreased</td>
</tr>
<tr>
<td>Similar size</td>
</tr>
<tr>
<td>Resected</td>
</tr>
<tr>
<td>Decreased/unknown</td>
</tr>
</tbody>
</table>

EtOH, Ethanol; NS, not significant.
IPMN

Rare Lesions

- Cystic lymphangioma
 - arise from lymphatic vessels
 - thought to be developmental aberrancies
 - account for 0.2% of all pancreatic cysts
 - benign, but may be locally invasive, and are more commonly found in women
 - symptomatic patients usually present with epigastric pain and a palpable mass
 - histology
 - interconnecting cysts separated by septa, lined by epithelial cells, and contain serous, serosanguineous, or chylous fluid (elevated triglyceride level)
 - benign nature
 - no further work-up is needed and lesions can be resected based on symptoms as needed

Rare Lesions

- Lymphoepithelial cysts
 - benign cystic entities, most commonly seen in men
 - abundant anucleated squamous cells, multinucleated giant cells, mature lymphocytes in a background of keratinaceous debris and a lack of neoplastic cells
 - surgery is not recommended in most patients unless they are symptomatic
- Other rare cystic tumors include
 - cystic degeneration of ductal adenocarcinoma
 - solid pseudo-pappillary tumors of the pancreas
 - other mesenchymal origin cysts

Risks - EUS/FNA

<table>
<thead>
<tr>
<th>Complication</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>2.75</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>1.1</td>
</tr>
<tr>
<td>Chest or abdominal pain</td>
<td>0.77</td>
</tr>
<tr>
<td>Fever</td>
<td>0.33</td>
</tr>
<tr>
<td>Bleeding</td>
<td>0.33</td>
</tr>
<tr>
<td>Infection</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th>Table 1. Characteristics of Common Pancreatic Cystic Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory Lesions</td>
</tr>
<tr>
<td>Pseudocysts Male</td>
</tr>
<tr>
<td>Gender Female</td>
</tr>
<tr>
<td>Age (decade) Variable</td>
</tr>
<tr>
<td>% of cystic neoplasms 75–80% of all cystic lesions</td>
</tr>
<tr>
<td>Epithelial lining None</td>
</tr>
<tr>
<td>Malignant potential None</td>
</tr>
<tr>
<td>Cytology Neutrophils and macrophages PAS-staining cuboidal epithelium</td>
</tr>
<tr>
<td>Prognosis Excellent</td>
</tr>
<tr>
<td>Serous Cystadenoma</td>
</tr>
<tr>
<td>Gender Female</td>
</tr>
<tr>
<td>Age (decade) 7th</td>
</tr>
<tr>
<td>% of cystic neoplasms 32–39% of all cystic lesions</td>
</tr>
<tr>
<td>Epithelial lining Glycogen-rich cuboidal epithelium without mucin</td>
</tr>
<tr>
<td>Malignant potential None</td>
</tr>
<tr>
<td>Cytology Very low; very few reports of serous cystadenocarcinoma</td>
</tr>
<tr>
<td>Prognosis Resection curative</td>
</tr>
<tr>
<td>Mucinous Cystadenoma</td>
</tr>
<tr>
<td>Gender Female</td>
</tr>
<tr>
<td>Age (decade) 5th–6th</td>
</tr>
<tr>
<td>% of cystic neoplasms 10–45% of all cystic lesions</td>
</tr>
<tr>
<td>Epithelial lining Columnar mucin-producing</td>
</tr>
<tr>
<td>Malignant potential High</td>
</tr>
<tr>
<td>Cytology High</td>
</tr>
<tr>
<td>Prognosis Excellent if resection before invasive carcinoma</td>
</tr>
<tr>
<td>IPMN</td>
</tr>
<tr>
<td>Gender Male</td>
</tr>
<tr>
<td>Age (decade) 6th–7th</td>
</tr>
<tr>
<td>% of cystic neoplasms 21–33% of all cystic lesions</td>
</tr>
<tr>
<td>Epithelial lining Papillary mucin-producing</td>
</tr>
<tr>
<td>Malignant potential Moderate</td>
</tr>
<tr>
<td>Cytology Moderate</td>
</tr>
<tr>
<td>Prognosis Excellent if resection before invasive carcinoma</td>
</tr>
<tr>
<td>Mucinous Cystadenocarcinoma</td>
</tr>
<tr>
<td>Gender Male</td>
</tr>
<tr>
<td>Age (decade) 6th–7th</td>
</tr>
<tr>
<td>% of cystic neoplasms <1% of all cystic lesions</td>
</tr>
<tr>
<td>Epithelial lining Dysplastic mucin-producing</td>
</tr>
<tr>
<td>Malignant potential —</td>
</tr>
<tr>
<td>Cytology —</td>
</tr>
<tr>
<td>Prognosis Poor, but better than ductal adenocarcinoma</td>
</tr>
</tbody>
</table>
Summary

- Cystic lesions of the pancreas are more commonly encountered
- Wide range of presenting symptoms
 - most patients are asymptomatic
- EUS/FNA plays a key role in the diagnostic work-up
 - offers prognostic value
 - surveillance recommendations made based on the cyst size and fluid characteristics
- Therapeutic modalities
 - endoscopic
 - radiologic
 - and/or surgical
- No definitive guidelines exist for surveillance of all the known cyst types
 - tailored approach is recommended in many cases
- Genetic profiles and tumor markers may play a role in improving treatment strategies
The End

Serge Sorser, MD
248 662 4110